can shed light on future developments. A holistic approach to discuss the future devices

that can stem from these technologies is made in sufficient detail. Finally, based on our

understanding, we propose and identify the areas which would be the hotspot of research

in the upcoming years. We also point out some road maps to help young researchers

solve specific problems in this domain.

References

1. R. Das, F. Moradi, H. Heidari, Biointegrated and wirelessly powered implantable brain devices: A

review, IEEE Trans. Biomed. Circuits Syst. 14 (2020) 343–358. 10.1109/TBCAS.2020.2966920

2. B. Shi, Z. Liu, Q. Zheng, J. Meng, H. Ouyang, Y. Zou, D. Jiang, X. Qu, M. Yu, L. Zhao, Y. Fan,

Z.L. Wang, Z. Li, Body-integrated self-powered system for wearable and implantable ap­

plications, ACS Nano. 13 (2019) 6017–6024. 10.1021

3. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G.

Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency, Nat.

Commun. 4 (2013) 1–10. 10.1038/ncomms2411

4. N. Chodankar, C. Padwal, H.D. Pham, K. (Ken) Ostrikov, S. Jadhav, K. Mahale, P.K.D.V.

Yarlagadda, Y.S. Huh, Y.K. Han, D. Dubal, Piezo-supercapacitors: A new paradigm of self-

powered wellbeing and biomedical devices, Nano Energy. 90 (2021) 106607. 10.1016/

J.NANOEN.2021.106607

5. F.R. Fan, Z.Q. Tian, Z. Lin Wang, Flexible triboelectric generator, Nano Energy. 1 (2012)

328–334. 10.1016/J.NANOEN.2012.01.004

6. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays,

Science (80-.). 312 (2006) 242–246. 10.1126/SCIENCE.1124005

7. A. Das, D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based

ceramic composites, Mater. Sci. Eng. C. 101 (2019) 539–563. 10.1016/j.msec.2019.03.077

8. Y. Zhang, X. Gao, Y. Wu, J. Gui, S. Guo, H. Zheng, Z.L. Wang, Self-powered technology based on

nanogenerators for biomedical applications, Exploration. 1 (2021) 90–114. 10.1002/EXP.20210152

9. U. Erturun, A.A. Eisape, S.H. Kang, J.E. West, Energy harvester using piezoelectric nano­

generator and electrostatic generator, Appl. Phys. Lett. 118 (2021) 063902. 10.1063/5.0030302

10. M. Venkatesan, W.C. Chen, C.J. Cho, L. Veeramuthu, L.G. Chen, K.Y. Li, M.L. Tsai, Y.C. Lai,

W.Y. Lee, W.C. Chen, C.C. Kuo, Enhanced piezoelectric and photocatalytic performance of

flexible energy harvester based on CsZn0.75Pb0.25I3/CNC–PVDF composite nanofibers,

Chem. Eng. J. (2021) 133620. 10.1016/J.CEJ.2021.133620

11. L. Ye, L. Chen, J. Yu, S. Tu, B. Yan, Y. Zhao, X. Bai, Y. Gu, S. Chen, High-performance

piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite

membranes for energy harvesting application, J. Mater. Sci. Mater. Electron. 2021 324. 32

(2021) 3966–3978. 10.1007/S10854-020-05138-0

12. G. Zhang, Q. Liao, Z. Zhang, Q. Liang, Y. Zhao, X. Zheng, Y. Zhang, G. Zhang, Q. Liao, Z.

Zhang, Q. Liang, Y. Zhao, X. Zheng, Y. Zhang, Novel piezoelectric paper-based flexible

nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose, Adv. Sci. 3 (2016)

1500257. 10.1002/ADVS.201500257

13. D. Tan, J. Zhou, K. Wang, X. Zhao, Q. Wang, D. Xu, Bow-type bistable triboelectric nano­

generator for harvesting energy from low-frequency vibration, Nano Energy. 92 (2022)

106746. 10.1016/J.NANOEN.2021.106746

14. M.N. Hasan, S. Sahlan, K. Osman, M.S. Mohamed Ali, Energy harvesters for wearable electro­

nics and biomedical devices, Adv. Mater. Technol. 6 (2021) 2000771. 10.1002/ADMT.202000771

15. C.R. Bowen, J. Taylor, E. Leboulbar, D. Zabek, A. Chauhan, R. Vaish, Pyroelectric materials

and devices for energy harvesting applications, Energy Environ. Sci. 7 (2014) 3836–3856. 10.

1039/C4EE01759E

338

Bioelectronics